97精品国产自产在线观看,国产成人线观看免费,精品熟女少妇av免费久久,日韩亚洲国产中文字幕欧美

你好,歡迎來到中華試劑網(wǎng) 購試劑 買耗材! [請登錄][注冊有驚喜]

貨號快速下單 | 簽到送積分   | 會員中心 | 客服熱線:400-021-2765

阿拉丁量子點(diǎn)技術(shù)在癌癥檢測和治療中的應(yīng)用

2023/11/7 15:53:39  作者:阿拉丁試劑


 

癌癥的早期篩查是必要的,因?yàn)榇蠖鄶?shù)腫瘤只有當(dāng)它們含有數(shù)百萬可能已經(jīng)轉(zhuǎn)移的細(xì)胞、達(dá)到一定的大小時(shí)才能被檢測到。目前采用的診斷技術(shù),如醫(yī)學(xué)成像、組織活檢和酶聯(lián)免疫吸附試驗(yàn)(ELISA)對體液的生物分析所具有的敏感性和特異性不足以檢測大多數(shù)類型的早期癌癥。此外,這些分析是勞動密集型、耗時(shí)、昂貴的,且沒有能夠反復(fù)利用結(jié)果的能力。另一方面,基于量子點(diǎn)的檢測是快速、簡單和經(jīng)濟(jì)的,可以實(shí)現(xiàn)癌癥標(biāo)志物的快速護(hù)理點(diǎn)篩查。量子點(diǎn)具有獨(dú)特的特性,使其成為檢測腫瘤的理想選擇,包括長時(shí)間的強(qiáng)而穩(wěn)定的熒光、耐光漂白性[1-5]、大的摩爾消光系數(shù)、高靈敏度的檢測,因?yàn)樗鼈兙邆湓谖蘸桶l(fā)射光上均非常高效的能力。由于量子點(diǎn)具有較大的表面積體積比,單個(gè)量子點(diǎn)可以與多種分子結(jié)合,因此量子點(diǎn)在設(shè)計(jì)更復(fù)雜的多功能納米結(jié)構(gòu)方面具有很大的應(yīng)用價(jià)值。各種類型的生物標(biāo)記物,如蛋白質(zhì),特定的DNA或mRNA序列和循環(huán)腫瘤細(xì)胞,已經(jīng)可以從血清樣本中確定用于癌癥診斷。因此,基于量子點(diǎn)(QD)的多路復(fù)用方法[1]可以同時(shí)識別多個(gè)生物標(biāo)志物,從而可以實(shí)現(xiàn)更有效的癌癥診斷。量子點(diǎn)已被共價(jià)連接到各種生物分子,如抗體、多肽、核酸和其他配體,用于熒光探測[6-19]。其在生物學(xué)中的一些應(yīng)用[20-32]以及它們在體內(nèi)分子成像方面的巨大潛力[33-37]正在一一被揭開。

 

無機(jī)量子點(diǎn)相對于有機(jī)熒光團(tuán)的優(yōu)勢

與生物實(shí)驗(yàn)中用于熒光標(biāo)記的傳統(tǒng)有機(jī)熒光團(tuán)相比,無機(jī)量子點(diǎn)由于其對光漂白的高抗性,使生物材料的可視化時(shí)間更長,應(yīng)用范圍更廣。由于熒光團(tuán)對周圍環(huán)境非常敏感,可以進(jìn)行光漂白,這是一種不可逆的光氧化過程,使它們成為非熒光體,是所有需要長時(shí)間觀察熒光團(tuán)標(biāo)記結(jié)構(gòu)的研究的主要限制。熒光團(tuán)只能在很窄的波長范圍內(nèi)被光學(xué)激發(fā),熒光發(fā)射也被限制在一定的波長范圍內(nèi)。而量子點(diǎn)可以用波長比熒光波長短的單一光源激發(fā)。量子點(diǎn)的熒光光譜較窄、對稱,在熒光團(tuán)中沒有紅尾,各種顏色都可以被觀察和區(qū)分,沒有任何光譜重疊。因此,用不同顏色的量子點(diǎn)對不同結(jié)構(gòu)進(jìn)行多色標(biāo)記成為可能。這種多路復(fù)用的方法[3, 38-40]在疾病診斷和藥物輸送等場景中具有廣闊的應(yīng)用前景。

量子點(diǎn)是一個(gè)跨學(xué)科的研究領(lǐng)域,經(jīng)過化學(xué)、物理、生物和醫(yī)學(xué)等不同學(xué)科的人員共同努力,有利于發(fā)現(xiàn)它的最大價(jià)值,將它們用于癌癥的檢測和治療就是一種極為重要的應(yīng)用。

 

量子點(diǎn)技術(shù)

量子點(diǎn)是一種具有獨(dú)特發(fā)光特性的無機(jī)半導(dǎo)體納米晶體,其典型直徑在2-8nm之間。它們通常由元素周期表中的II和VI族元素(例如CdSe和CdTe)或III和V族元素(例如InP和InAs)的原子組成。它們的物理尺寸小于導(dǎo)致量子限制效應(yīng)的波爾半徑[1]激子,這就是它們具有獨(dú)特的光學(xué)和電子特性的原因。

 

量子點(diǎn)的合成

高質(zhì)量的量子點(diǎn)已經(jīng)可以通過各種方法合成[41-43],但通常它們的合成是在有機(jī)溶劑中進(jìn)行的,如甲苯或氯仿,并且會添加表面活性劑,反應(yīng)溫度較高。但表面活性劑包覆的顆粒不溶于水,其極性表面活性劑頭基會附著在量子點(diǎn)(QD)的無機(jī)核心上,疏水鏈則會凸出到有機(jī)溶劑中,而一般來說,所有細(xì)胞實(shí)驗(yàn)都涉及水溶性物質(zhì)。因此,為了使表面活性劑具有水溶性,人們制定了各種策略,要么替換表面活性劑層,要么涂上額外的保護(hù)層,如親水或兩親聚合物[44-45]。表面活性劑的疏水涂層被配體分子所取代,配體分子一端攜帶官能團(tuán)與量子點(diǎn)表面結(jié)合,另一端攜帶親水性基團(tuán)使量子點(diǎn)可溶于水。也有報(bào)道使用兩親性聚合物作為QD表面的附加涂層[38, 46-48]。聚合物的疏水尾部與QD表面的疏水表面活性劑層發(fā)生反應(yīng),而聚合物的親水基團(tuán)在外端產(chǎn)生水溶性。量子點(diǎn)還被包裹在磷脂膠束[8]中,使其可溶于水。

 

量子點(diǎn)的性質(zhì)及應(yīng)用

最常用的量子點(diǎn)系統(tǒng)是CdSe的內(nèi)半導(dǎo)體核包覆ZnS的外殼。ZnS殼層負(fù)責(zé)保障CdSe核的化學(xué)和光學(xué)穩(wěn)定性。只需改變量子點(diǎn)的大小,就可以使其發(fā)出從紫外線到紅外光譜中所有波長的熒光。量子點(diǎn)的熒光波長取決于它的能隙(即激發(fā)態(tài)和基態(tài)之間的差),這是由量子點(diǎn)的大小決定的[49-52]。量子點(diǎn)具有光譜線寬窄、亮度高、寬光譜范圍內(nèi)吸收系數(shù)大、高光穩(wěn)定性和多路探測能力等特點(diǎn),即使在復(fù)雜的體內(nèi)條件下,它們也非常明亮和穩(wěn)定,這使它們適用于先進(jìn)的分子和細(xì)胞成像、藥物傳遞以及高靈敏度的生物測定和診斷的應(yīng)用[53-54],QD生物偶聯(lián)物使具有更高分辨率的高靈敏度實(shí)時(shí)成像,和對活細(xì)胞表面單個(gè)受體分子的跟蹤成為可能[13,55]。量子點(diǎn)的各種應(yīng)用如圖1所示。在大多數(shù)情況下,用于癌癥檢測的功能QD共軛物由半導(dǎo)體核心(CdSe, CdTe)組成;在CdSe作為量子點(diǎn)的情況下,會增加一個(gè)額外的殼層,如ZnS,因其具有比CdSe更高的能帶隙,能夠提高量子產(chǎn)率,同時(shí)可作為水溶親水性涂層,以及作為功能化抗體或其他生物分子在腫瘤位點(diǎn)的補(bǔ)充靶向癌癥標(biāo)記物。

圖1量子點(diǎn)的應(yīng)用

 

克服量子點(diǎn)的毒害性

由半導(dǎo)體納米粒子組成的天然量子點(diǎn)在自然界中是有毒的。已經(jīng)觀察到,CdSe量子點(diǎn)對暴露在紫外線下較長時(shí)間的細(xì)胞有很高的毒性,因?yàn)樽贤饩€會溶解CdSe,從而釋放出有毒的鎘離子。然而,在體內(nèi)研究[48]表明,聚合物涂層量子點(diǎn)在沒有紫外線的情況下是無毒的。研究還表明,將膠束包裹的量子點(diǎn)注射到青蛙胚胎中并不影響其發(fā)育[8]。因此,量子點(diǎn)通常被封裝在兩親性聚合物的外殼涂層內(nèi)[57-58],使其具有水溶性,并能抵抗化學(xué)或酶降解。它們通常在有機(jī)溶劑中合成,如三-正辛基-氧化磷化氫(TOPO)[59-62]和十六烷基胺,它們具有長烷基鏈和高沸點(diǎn),從而可以防止形成聚集體。近年來,對量子點(diǎn)進(jìn)行表面化學(xué)修飾使其具有水溶性的研究取得了很大的進(jìn)展[63-64]。最為常見的是,量子點(diǎn)與聚乙二醇(PEG)或類似的配體連接,以使它們具有生物相容性并減少非特異性結(jié)合。通過使用不同的策略將它們與各種生物親和配體(如多肽、抗體、寡核苷酸等)結(jié)合,使它們對目標(biāo)位點(diǎn)具有特異性。用于檢測腫瘤細(xì)胞生物標(biāo)記物的QD生物偶聯(lián)物的可能示意圖如圖2所示。圖3則簡要描述了QD技術(shù)用于癌癥體內(nèi)診斷的各個(gè)步驟。

圖2多功能量子點(diǎn)通常用于靶向腫瘤細(xì)胞。QDs與各種親和配體(肽、抗體、抑制劑、藥物等)結(jié)合,這些配體對腫瘤細(xì)胞的生物標(biāo)志物具有特異性。

 

圖3. 量子點(diǎn)用于癌癥體內(nèi)診斷的步驟。(a)QD生物偶聯(lián)物的形成,(b)將QD生物偶聯(lián)物靜脈注射到小鼠體內(nèi),(c)QD生物偶聯(lián)物能有效靶向腫瘤細(xì)胞。

 

量子點(diǎn)的閃爍行為

Nirmal等人[65]首次發(fā)現(xiàn),量子點(diǎn)在連續(xù)激發(fā)下會表現(xiàn)出閃爍行為,即間歇性開關(guān)發(fā)射,這歸因于俄歇電離[65-66]。即使在今天,這種行為的原理也沒有得到很好的解釋。但是,只有在分析過程中需要單個(gè)QD的信號時(shí)(如流式細(xì)胞術(shù)應(yīng)用程序),它才需要被重點(diǎn)關(guān)注到。在這種情況下,單個(gè)量子點(diǎn)的發(fā)射可能由于“閃爍”而關(guān)閉,從而導(dǎo)致探測器的信號丟失。但通常在大多數(shù)應(yīng)用中,如在基于細(xì)胞的分析中,涉及多個(gè)量子點(diǎn),即使一些量子點(diǎn)閃爍,其他量子點(diǎn)也會發(fā)出信號供最終檢測,因此,檢測器不會遺漏任何信號。一種抵消閃爍導(dǎo)致的量子產(chǎn)率降低的方法是在量子點(diǎn)核心的頂部組裝一個(gè)由幾層具有更大能帶隙的材料原子層組成的殼層。

 

表面功能化對量子點(diǎn)光學(xué)性質(zhì)的影響

一些基礎(chǔ)研究表明,量子點(diǎn)的發(fā)光對表面功能化過程非常敏感,因?yàn)榉肿优c量子點(diǎn)表面的相互作用會改變量子點(diǎn)表面的電荷[67],但許多基于量子點(diǎn)的探測應(yīng)用是基于目標(biāo)分析物分子與量子點(diǎn)表面功能化的生物分子相互作用后量子點(diǎn)熒光的變化而衍生的。量子點(diǎn)的表面功能化改善了其溶解度,但它也會降低量子效率。這在經(jīng)巰基乙酸處理的量子點(diǎn)中得到了證明,量子效率大大降低[7, 63],但是蛋白質(zhì)功能化的量子點(diǎn)傾向于保持它們的量子效率,并提供更長的保質(zhì)期,它們還可以在不降低量子效率的情況下被多個(gè)官能團(tuán)[7]進(jìn)一步功能化。

 

用于觀察和追蹤量子點(diǎn)的測量系統(tǒng)

使用共聚焦顯微鏡、全內(nèi)反射顯微鏡或外熒光顯微鏡可以對單個(gè)量子點(diǎn)進(jìn)行更長時(shí)間的觀測和追蹤,最長可達(dá)數(shù)小時(shí)。Gao等人[68]和So等人[69]介紹了利用量子點(diǎn)作為標(biāo)簽進(jìn)行熒光成像及其測量的方案:Gao等人采用了波長分辨光譜成像的全身宏觀照明系統(tǒng),可對體內(nèi)分子靶標(biāo)進(jìn)行高靈敏度檢測;So等人也采用了波長分辨光譜成像系統(tǒng),其軟件可將自發(fā)熒光與量子點(diǎn)信號分離。

 

主動和被動量子點(diǎn)靶向技術(shù)

QD生物偶聯(lián)物可以通過主動靶向和被動靶向兩種機(jī)制在體內(nèi)傳遞給腫瘤,盡管被動靶向比主動靶向慢得多,效率也低得多。在被動靶向機(jī)制中,由于增強(qiáng)的通透性和保留作用,QD生物偶聯(lián)物優(yōu)先聚集在腫瘤部位[70-72]。這種效應(yīng)可以歸因于血管生成腫瘤(i)產(chǎn)生血管內(nèi)皮生長因子,負(fù)責(zé)增強(qiáng)滲透性,(ii)缺乏有效的淋巴引流系統(tǒng),這導(dǎo)致QD生物偶聯(lián)物積累。另一方面,在主動靶向機(jī)制中,抗體偶聯(lián)QD將抗體與腫瘤細(xì)胞上存在的前列腺特異性膜抗原等特異性腫瘤生物標(biāo)記物結(jié)合在靶向部位。

 

深層組織成像要求

研究表明,深層組織成像需要使用遠(yuǎn)紅外線和近紅外線[73],這就需要使用近紅外發(fā)光的QD來提高腫瘤成像的靈敏度,因?yàn)檠汉退甗74]的主要吸收峰在這一區(qū)域不會產(chǎn)生干擾。

 

去除活細(xì)胞中的量子點(diǎn)

在將該技術(shù)用于人類的癌癥診斷和治療之前,需要對QD從活體動物體內(nèi)的清除及其新陳代謝進(jìn)行更加重點(diǎn)的關(guān)注和深入研究,受保護(hù)的QD從體內(nèi)清除的唯一途徑是通過腎臟緩慢過濾和排泄,因?yàn)橥ㄟ^化學(xué)或酶分解的可能性很小。

 

量子點(diǎn)在疾病診斷和治療中的潛在應(yīng)用

基于量子點(diǎn)技術(shù)的最新進(jìn)展和研究人員對此的濃厚興趣,在不久的將來,量子點(diǎn)在疾病診斷和治療領(lǐng)域?qū)兄T多潛在的應(yīng)用。

 

生物分子與量子點(diǎn)的結(jié)合

目前已開發(fā)出各種共價(jià)和非共價(jià)策略(如圖4所示),用于將蛋白質(zhì)和抗體等生物大分子與量子點(diǎn)結(jié)合。生物大分子可以利用交聯(lián)劑[1, 6, 8, 17, 38, 44, 64, 75-77]進(jìn)行共價(jià)結(jié)合,交聯(lián)劑將量子點(diǎn)表面的-COOH、-NH2或 -SH等官能團(tuán)與生物大分子上的官能團(tuán)交聯(lián)。如今,有各種共軛化學(xué)方法可用于修飾生物大分子,使其具有所需的官能團(tuán)。

圖4將抗體/蛋白質(zhì)與量子點(diǎn)連接的各種策略

 

修飾生物分子的策略

其中一種策略采用N-乙基-N′-(3-二乙基氨基丙基)碳二亞胺(EDC)作為雜交連接劑,將量子點(diǎn)的羧基與蛋白質(zhì)的氨基交聯(lián)。這種方法不需要對蛋白質(zhì)進(jìn)行任何化學(xué)修飾,因?yàn)榇蠖鄶?shù)蛋白質(zhì)都含有伯胺。

另一種策略是基于活性酯馬來酰亞胺介導(dǎo)的胺和巰基偶聯(lián)。但這種方法有一個(gè)局限性,即游離的巰基在氧氣存在下不穩(wěn)定,在原生生物大分子中很少發(fā)現(xiàn)。最近,Pellegrino等人[46]采用了含有多個(gè)酸酐單元的預(yù)活化兩親聚合物將蛋白質(zhì)與量子點(diǎn)結(jié)合。由于聚酐是可生物降解的聚合物,因此這種方法有可能應(yīng)用于制造持續(xù)給藥系統(tǒng),但將生物大分子與量子點(diǎn)精確控制和定向結(jié)合的策略尚未被深入研究。Goldman等人[78]利用一種融合蛋白將免疫球蛋白G(IgG)與量子點(diǎn)結(jié)合,該融合蛋白具有一個(gè)帶正電的亮氨酸拉鏈結(jié)構(gòu)域,可與帶負(fù)電的量子點(diǎn)發(fā)生靜電結(jié)合,而蛋白G結(jié)構(gòu)域可與IgG的恒定Fc區(qū)域結(jié)合,從而使F(ab′)2區(qū)域可自由用于抗原結(jié)合。鎳-氮三乙酸(Ni-NTA)作為螯合劑,可用于將六組氨酸標(biāo)記的生物大分子與量子點(diǎn)結(jié)合。Gao和他在美國埃默里大學(xué)的研究小組正在開發(fā)這種技術(shù),它在生物分子的可控定向結(jié)合、探針體積小和生產(chǎn)成本低等方面具有優(yōu)勢。鏈霉親和素-生物素結(jié)合策略也可用于將生物大分子與量子點(diǎn)結(jié)合,因?yàn)殒溍褂H和素涂層的量子點(diǎn)可在市場上買到,而且很容易與生物素化的生物大分子結(jié)合[13, 38, 55, 59, 80]。圖4展示了量子點(diǎn)的各種生物共軛策略。

 

量子點(diǎn)對生物分子生物學(xué)功能的影響

研究表明,在許多情況下,生物大分子與量子點(diǎn)的共軛不會改變生物大分子與其特定受體的結(jié)合能力[6, 8-9, 13, 17, 38, 55, 58-59 64, 76-77, 80-81]及其生物功能。Kloepfer等人[77]發(fā)現(xiàn),將量子點(diǎn)與轉(zhuǎn)鐵蛋白共軛不會影響蛋白質(zhì)的功能。Dahan等人[82] 也觀察到,量子點(diǎn)與膜結(jié)合受體的結(jié)合對受體在膜中的擴(kuò)散行為沒有影響。不過,也有少數(shù)報(bào)道稱量子點(diǎn)可能會影響生物大分子的生物功能,如神經(jīng)遞質(zhì)血清素與血清素轉(zhuǎn)運(yùn)蛋白的結(jié)合親和力[14]。這可能是由于量子點(diǎn)的立體阻礙作用,要確認(rèn)量子點(diǎn)對生物大分子的生物功能可能產(chǎn)生的影響,還需要進(jìn)行詳細(xì)的研究。

 

量子點(diǎn)技術(shù)在癌癥診斷中的應(yīng)用進(jìn)展

在早期階段,量子點(diǎn)被用于幾種成像應(yīng)用,以取代有機(jī)染料,但當(dāng)觀察到這些材料持續(xù)發(fā)射強(qiáng)熒光數(shù)周后,這些材料的巨大應(yīng)用潛力才得以實(shí)現(xiàn)。這是顯微成像技術(shù)的重大進(jìn)步,有助于揭示許多細(xì)胞過程。在隨后的發(fā)展階段,研究人員對量子點(diǎn)技術(shù)產(chǎn)生了濃厚的興趣,并開始探索其在不同領(lǐng)域的應(yīng)用。制備了由相同材料組成但尺寸不同的量子點(diǎn),其經(jīng)單一波長的光激活后可以產(chǎn)生不同的顏色。實(shí)驗(yàn)證明,標(biāo)記有生物分子(如抗體、多肽等)的量子點(diǎn)可用于檢測細(xì)胞表面或細(xì)胞內(nèi)部的特定分子。

 

量子點(diǎn)-多肽偶聯(lián)物可靶向腫瘤細(xì)胞

Akerman和同事[58]發(fā)表了使用量子點(diǎn)-多肽偶聯(lián)物在體內(nèi)靶向腫瘤血管的研究。他們采用了ZnS封裝的CdSe量子點(diǎn),并展示了涂覆有不同多肽的量子點(diǎn)的靶向能力。通過靜脈注射后,涂有肺靶向肽的量子點(diǎn)在小鼠肺部聚集,該多肽與肺血管內(nèi)皮細(xì)胞上的膜二肽酶結(jié)合;第二種情況是,涂覆有靶向肽的量子點(diǎn)與某些腫瘤的血管和腫瘤細(xì)胞結(jié)合;第三種情況,涂有靶向肽的量子點(diǎn)會與淋巴管和腫瘤細(xì)胞結(jié)合。該研究小組還表明,在量子點(diǎn)外涂層中添加PEG可防止其在網(wǎng)狀內(nèi)皮組織中的非選擇性聚集。

 

量子點(diǎn)識別活體乳腺癌細(xì)胞的能力

量子點(diǎn)公司(Quantum Dot Corporation)和基因泰克公司(Genentech)的研究小組證明了量子點(diǎn)在識別可能對抗癌藥物產(chǎn)生反應(yīng)的活體乳腺癌細(xì)胞方面的潛力[38]。他們采用與免疫球蛋白G(IgG)和鏈霉親和素相連的量子點(diǎn)來標(biāo)記活體乳腺癌細(xì)胞表面的Her2癌癥標(biāo)記物,并探索了同時(shí)標(biāo)記細(xì)胞表面和細(xì)胞核中 Her2的量子點(diǎn)技術(shù)。研究人員用單一激發(fā)波長同時(shí)檢測了兩個(gè)細(xì)胞靶標(biāo),從而表明不同顏色的量子點(diǎn)(即尺寸不同但材料相同的量子點(diǎn))可用于區(qū)分單個(gè)細(xì)胞的不同部分,從而實(shí)現(xiàn)多重靶標(biāo)檢測。

 

多功能量子點(diǎn)同時(shí)靶向和成像活體動物的腫瘤

Gao和同事報(bào)道了多功能量子點(diǎn)同時(shí)靶向和成像活體動物的腫瘤的研究[68]。高度穩(wěn)定的量子點(diǎn)共軛物由兩親性三嵌段共聚物(用于體內(nèi)保護(hù))、靶向配體(用于腫瘤抗原識別)和多個(gè)PEG分子(用于改善生物相容性和循環(huán))組成。通過組織切片顯微鏡和全動物光譜成像監(jiān)測量子點(diǎn)探針的體內(nèi)行為,QD結(jié)合物通過靜脈注射小鼠,我們觀察到它們會通過被動靶向機(jī)制(由于腫瘤血管的滲漏)和主動靶向機(jī)制(由于包被腫瘤特異性抗體的QD偶聯(lián)物與腫瘤標(biāo)記物相互作用)在靶向腫瘤部位聚集。Gao和同事還使用量子點(diǎn)標(biāo)記培養(yǎng)中的特定細(xì)胞,觀察到在很短的一段時(shí)間內(nèi),量子點(diǎn)在細(xì)胞核中積累。因此,具有量子點(diǎn)的細(xì)胞在注射后,可以借助其熒光在活體動物體內(nèi)進(jìn)行跟蹤。

 

近紅外量子點(diǎn)用于前哨淋巴結(jié)繪圖

Kim和團(tuán)隊(duì)[34]探索了利用發(fā)射波長為850 nm的近紅外量子點(diǎn)進(jìn)行前哨淋巴結(jié)繪圖的實(shí)用性,這是在最靠近受影響器官的淋巴結(jié)中檢測游離癌細(xì)胞的主要途徑。將量子點(diǎn)經(jīng)皮內(nèi)注射到活體小鼠體內(nèi)后,甚至在皮膚下1厘米處的前哨淋巴結(jié)也能得到實(shí)時(shí)跟蹤。這一進(jìn)展是一項(xiàng)重大突破,因?yàn)樵诓皇褂梅派湫詷?biāo)記的情況下,切除前哨淋巴結(jié)所需的切口面積減小了。研究人員正在嘗試使用量子點(diǎn)技術(shù)來治療癌癥,一種可能性是用X射線/紅外光照射注射后的量子點(diǎn),這將為腫瘤提供熱能并引發(fā)細(xì)胞凋亡/程序性細(xì)胞死亡的過程。

 

用于多路復(fù)用的量子點(diǎn)

Goldman和同事[83]在使用單一激發(fā)光源的夾心免疫測定中使用了四種具有不同發(fā)射波長的量子點(diǎn),證明了量子點(diǎn)對四種毒素進(jìn)行多重分析的能力。同樣地,Makrides和同事[84]在蛋白質(zhì)印跡檢測中使用了兩種光譜不同的量子點(diǎn)來檢測兩種蛋白質(zhì)。在需要檢測的目標(biāo)腫瘤部位存在的各種癌癥生物標(biāo)記物時(shí),多路復(fù)用的方法具有極其重要的意義。

 

用于體內(nèi)成像的自發(fā)光量子點(diǎn)

最近,斯坦福大學(xué)的Jianghong Rao研究小組證明,自發(fā)光QD共軛物(QD-Luc8)具有體內(nèi)成像的潛在應(yīng)用價(jià)值[69]。該研究小組開發(fā)了一種雷尼拉腎形熒光素酶(Luc8)的八次突變變體,它在血清中更穩(wěn)定,催化效率更高。利用 1-乙基-3-(3-二甲基氨基丙基)鹽酸碳二亞胺(EDC)交聯(lián)劑,將Luc8與聚合物包覆的鎘/鋅核殼QD 655共軛,制成自發(fā)光 QD共軛,它們在沒有外部激發(fā)的情況下通過生物發(fā)光共振能量轉(zhuǎn)移(BRET)發(fā)光。BRET是一個(gè)能量從發(fā)光供體蛋白(如R. reniformis 熒光素酶)向附近的受體熒光蛋白進(jìn)行非輻射性轉(zhuǎn)移的過程[69, 85-87],與現(xiàn)有的QD相比,它大大提高了小動物成像的靈敏度。用于體內(nèi)成像的QD的最大優(yōu)勢之一是,通過調(diào)整其尺寸,可在整個(gè)近紅外光譜范圍內(nèi)調(diào)整其發(fā)射波長,從而產(chǎn)生在生物緩沖液中高度穩(wěn)定的光穩(wěn)定性熒光團(tuán)。這是因?yàn)樯顚咏M織光學(xué)成像在近紅外光譜中效果最佳,因?yàn)槿鹄⑸潆S波長增加而減少,而且動物體內(nèi)的主要發(fā)色團(tuán)(即血紅蛋白和水)在該光譜中具有局部吸收最小值。使用EDC將檢測癌癥生物標(biāo)志物的抗體與QD-Luc8復(fù)合物結(jié)合。將形成的QD-Luc8抗體復(fù)合物通過尾靜脈注射到患癌小鼠體內(nèi),以檢測癌癥生物標(biāo)志物。然后將小鼠麻醉并轉(zhuǎn)移到光密室中。幾分鐘后,靜脈注射Luc8的底物——腔腸素,并拍攝體內(nèi)生物發(fā)光圖像。

 

基于量子點(diǎn)的靶向癌癥藥物傳遞系統(tǒng)

Shuming Nie及其同事[35]用一層防水的聚合物涂層改造了原始的鎘硒QD,防止了劇毒鎘離子從QD共軛物中滲出,并提供了一種將腫瘤靶向分子和給藥功能化學(xué)附著到QD共軛物上的方法,該研究小組正在開發(fā)一種針對癌細(xì)胞的給藥系統(tǒng)。開發(fā)的與肽或抗體結(jié)合的 量子點(diǎn),用于靶向在小鼠體內(nèi)生長的人類腫瘤細(xì)胞,QD將被調(diào)整為在紅外區(qū)域輻射,以防止能量發(fā)射對組織造成損害。與針對目標(biāo)癌細(xì)胞表面癌癥標(biāo)志物的特異性肽/抗體結(jié)合的量子點(diǎn)只有在受到激光照射時(shí)才會釋放藥物,這樣就可以控制接受毒素的細(xì)胞,從而將副作用降到最低。同時(shí)他們還在努力將量子點(diǎn)的熒光波長擴(kuò)展到900 nm以上,因?yàn)閹缀鯖]有任何生物分子的熒光波長超過這一數(shù)值。

 

該技術(shù)的現(xiàn)狀

如今,在量子點(diǎn)技術(shù)的幫助下,癌癥研究人員能夠觀察到腫瘤細(xì)胞中發(fā)生的基本分子事件。這是通過熒光顯微鏡在體內(nèi)跟蹤不同大小、不同顏色的QD(標(biāo)記有多種不同的生物分子)來實(shí)現(xiàn)的,量子點(diǎn)技術(shù)在納米生物技術(shù)和醫(yī)療診斷等領(lǐng)域具有巨大的應(yīng)用潛力,可被用作標(biāo)簽。但要在人體中使用它們,仍需要進(jìn)行廣泛的研究,以確定使用的長期影響。

 

量子點(diǎn)在癌癥診斷和治療中的應(yīng)用前景

研究人員對量子點(diǎn)的探索始于最近二十年。雖然這一領(lǐng)域仍處于起步階段,但由于其獨(dú)特的光學(xué)和電子特性,它已深深吸引了科學(xué)家和工程師的關(guān)注。量子點(diǎn)已經(jīng)徹底改變了分子成像領(lǐng)域,在未來幾年,它們將在不同領(lǐng)域得到不同程度的發(fā)展,影響最大的領(lǐng)域之一肯定是活細(xì)胞的細(xì)胞內(nèi)成像,這項(xiàng)技術(shù)將為了解癌癥的病理生理學(xué)以及腫瘤成像和篩查提供新的見解。量子點(diǎn)在未來肯定會成為所設(shè)想的多功能納米設(shè)備的組成部分之一,這種設(shè)備可以檢測病變組織、提供治療并實(shí)時(shí)報(bào)告進(jìn)展情況。

 

參考文獻(xiàn)

1. Chan W.C.W., Maxwell D.J., Gao X., Bailey R.E., Han M. and Nie S., “Luminescent QDs for multiplexed biological detection and imaging”, Curr. Opin. Biotechnol., 13, 40-46, 2002.

2. Alivisatos A.P., “Semiconductor clusters, nanocrystals, and quantum dots”, Science, 271, 933-937, 1996.

3. Han M., Gao X., Su J.Z. and Nie S., “Quantum dot-tagged microbeads for multiplexed optical coding of biomolecules”, Nat. Biotechnol., 19, 631-635, 2001.

4. Niemeyer C.M., “Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science”, Angrew. Chem. Int. Ed. Engl., 40, 4128-4158, 2001.

5. Leatherdale C.A., Woo W.K., Mikulec F.V. and Bawendi M.G., “On the absorption cross section of CdSe nanocrystal quantum dots”, J. Phys. Chem. B, 106, 7619-7622, 2002.

6. Bruchez M., Moronne M., Gin P., Weiss S. and Alivisatos A.P., “Semiconductor nanocrystals as fluorescent biological labels”, Science, 281, 2013-2015, 1998.

7. Mattoussi H., Mauro J.M., Goldman E.R., Anderson G.P., Sundar V.C., Mikulec F.V. and Bawendi M.G., “Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein”, J. Am. Chem. Soc., 122, 12142-12150, 2000.

8. Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H. and Libchaber A., “In vivo imaging of QDs encapsulated in phospholipid micelles”, Science, 298, 1759-1762, 2002.

9. Jaiswal J.K., Mattoussi H., Mauro J.M. and Simon S.M., “Long-term multiple color imaging of live cells using quantum dot bioconjugates”, Nat. Biotechnol., 21, 47-51, 2003.

10. Larson D.R., Zipfel W.R., Williams R.M., Clark S.W., Bruchez M.P., Wise F.W. and Webb W.W., “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo”, Science, 300, 1434-1436, 2003.

11. Ishii, D., Kinbara K., Ishida Y., Ishii N., Okochi M., Yohda M. and Aida T., “Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles”, Nature, 423, 628-632, 2003.

12. Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B. and Mauro J.M., “Self-assembled nanoscale biosensors based on quantum dot FRET donors”, Nat. Mater., 2, 630-639, 2003.

13. Dahan M., Levi S., Luccardini C., Rostaing P., Riveau B. and Triller A., “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking”, Science, 302, 442-445, 2003.

14. Rosenthal S.J., Tomlinson I., Adkins E.M., Schroeter S., Adams S., Swafford L., McBride J., Wang Y., DeFelice L.J. and Blakely R.D., “Targeting cell surface receptors with ligand-conjugated nanocrystals”, J. Am. Chem. Soc., 124, 4586-4594, 2002.

15. Mahtab R., Harden H.H. and Murphy C.J., “Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions”, J. Am. Chem. Soc., 122, 14-17, 2000.

16. Sun B., Xie W., Yi G., Chen D., Zhou Y. and Cheng J., “Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection”, J. Immunological Methods, 249, 85-89, 2001.

17. Pathak S., Choi S.-K., Arnheim N. and Thompson M.E., “Hydroxylated quantum dots as luminescent probes for in situ hybridization”, J. Am. Chem. Soc., 123, 4103-4104, 2001.

18. Klarreich E., “Biologists join the dots”, Nature, 413, 450-452, 2001.

19. Mitchell P., “Turning the spotlight on cellular imaging”, Nat. Biotechnol., 19, 1013-1017, 2001.

20. Jovin T.M., “Quantum dots finally come of age”, Nat. Biotechnol., 21, 32-33, 2003.

21. Seydel C., “Quantum dots get wet”, Science, 3000, 80-81, 2003.

22. Taton T.A., “Bio-nanotechnology: two way traffic”, Nat. Mater., 2, 73-74, 2003.

23. Bentolila L.A. and Weiss S., “Biological quantum dots go live”, Phys. World, 16, 23-24, 2003.

24. Uren R.F., “Cancer surgery joins the dots”, Nat. Biotechnol., 22, 38-39, 2004.

25. Michalet X., Pinaud F. , Lacoste T.D., Dahan M., Bruchez M.P., Alivisatos A.P. and Weiss S., “Properties of fluorescent semiconductor nanocrystals and their application to biological labelling”, Single Mol., 2, 261-276, 2001.

26. Sutherland A.J., “Quantum dots as luminescent probes in biological systems”, Curr. Opin. Solid State Mater. Sci., 6, 365-370, 2003.

27. Watson A., Wu X. and Bruchez M., “Lighting up cells with quantum dots”, Biotechniques, 34, 296-303, 2003.

28. Parak W.J., Gerion D., Pellegrino T., Zanchet D., Micheel C., Williams S.C., Boudreau R., Le Gros M.A., Larabell C.A. and Alivisatos A.P., “Biological applications of colloidal nanocrystals”, Nanotechnology, 14, R15-27, 2003.

29. Bagwe R.P., Zhao X. and Tan W., “Bioconjugated luminescent nanoparticles for biological applications”, J. Dispersion. Sci. Technol., 24, 453-464, 2003.

30. Dubertret B., “In vivo imaging using quantum dots”, J. Med. Sci., 19, 532-534, 2003.

31. Alivisatos A.P., “The use of nanocrystals in biological detection”, Nat. Biotechnol., 22, 47-51, 2004.

32. Pellegrino T., Kudera S., Liedl T., Javier A.M., Manna L. and Parak W.J., “On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications”, Small, 1, 48-63, 2005.

33. Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S. and Weiss S., “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, 307, 538-544, 2005.

34. Kim S., Lim Y.T., Soltesz E.G., De Grand A.M., Lee J., Nakayama A., Parker J.A., Mihaljevic T., Laurence R.G., Dor D.M., Cohn L.H., Bawendi M.G. and Frangioni J.V., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping”, Nat. Biotechnol., 22, 93-97, 2004.

35. Gao X., Cui Y., Levenson R.M., Chung L.W.K. and Nie S., “In vivo cancer targeting and imaging with semiconductor quantum dots”, Nat. Biotechnol., 22, 969-976, 2004.

36. Jaiswal J.K. and Simon S.M., “Potentials and pitfalls of fluorescent quantum dots for biological imaging”, Trends Cell Biol., 14, 497-504, 2004.

37. Medintz I.L., Uyeda H.T., Goldman E.R. and Mattoussi H., “Quantum dot bioconjugates for imaging, labelling and sensing”, Nat. Mater., 4, 435-446, 2005.

38. Wu X., Liu H., Haley K.N., Treadway J.A., Larson J.P., Ge N., Peale F. and Bruchez M.P., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots”, Nature Biotechnology, 21, 41-46, 2003.

39. Mattheakis L.C., Dias J.M., Choi Y.-J., Gong J., Bruchez M., Liu J. and Wang E., “Optical coding of mammialian cells using semiconductor quantum dots”, Anal. Biochem., 327, 200-208, 2004.

40. Rosenthal S.J., “Bar-coding biomolecules with fluorescent nanocrystals”, Nat. Biotechnol., 19, 621-622, 2001.

41. Talapin D.V., Rogach A.L., Kornowski A., Haase M. and Weller H., “Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphine mixture”, Nano Lett., 1, 207-211, 2001.

42. Peng Z.A. and Peng X., “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor”, J. Am. Chem. Soc., 123, 183-184, 2001.

43. Reiss P., Bleuse J. and Pron A., “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion”, Nano Lett., 2, 781-784, 2002.

44. Parak W.J., Gerion D., Zanchet D., Woerz A. S., Pellegrino T., Micheel C., Williams S. C., Seitz M., Bruehl R. E., Bryant Z., Bustamante C., Bertozzi C. R. and Alivisatos A. P., “Conjugation of DNA to silanized colloidal semiconductor nanocrystaline quantum dots”, Chem. Mater., 14, 2113-2119, 2002.

45. Wilhelm C., Billotey C., Roger J., Pons J.N., Bacri J.C. and Gazeau F., “Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating”, Biomaterials, 24, 1001-1011, 2003.

46. Pellegrino T., Manna L. and Kudera S., “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals”, Nano Lett., 4, 703-07, 2004.

47. Petruska M.A., Bartko A.P. and Klimov V.I., “An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites”, J. Am. Chem. Soc., 126, 714-715, 2004.

48. Ballou B., Lagerholm B.C., Ernst L.A., Bruchez M.P. and Waggoner A.S., “Noninvasive imaging of quantum dots in mice”, Bioconjug. Chem., 15, 79-86, 2004.

49. Murray C.B., Kagan C.R. and Bawendi M.G., “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies”, Annu. Rev. Mater. Sci., 30, 545-610, 2000.

50. Qu L. and Peng X., “Control of photoluminescence properties of CdSe nanocrystals in growth”, J. Am. Chem. Soc., 124, 2049-2055, 2002.

51. Kippeny T., Swafford L.A. and Rosenthal S.J., “Semiconductor nanocrystals: a powerful visual aid for introducing the particle in a box”, J. Chem Educ., 79, 1094, 2002.

52. Yu W.W., Qu L., Guo W. and Peng X., “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals”, Chem. Mater., 15, 2854-2860, 2003.

53. Gao X.H. and Nie S.M., “Molecular profiling of single cells and tissue specimens with quantum dots”, Trends Biotechnol., 21, 371-373, 2003.

54. Jovin T.M., “Quantum dots finally come of age”, Nat. Biotechnol., 21, 32-33, 2003.

55. Lidke D.S., Nagy P., Heintzmann R., Arndt-Jovin D.J., Post J.N., Grecco H.E., Jares-Erijman E.A. and Jovin T.M., “Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction”, Nat. Biotechnol., 22, 198-203, 2004.

56. Derfus A.M., Chan W.C.W. and Bhatia S.N., “Probing the cytotoxicity of semiconductor quantum dots”, Nano Lett., 4, 11-18, 2004.

57. Akerman M.E., Chan W.C.W., Laakkonen P., Bhatia S.N. and Ruoslahti, E., “Nanocrystal targeting in vivo”, PNAS, 99, 12617-21, 2002.

58. Ness J.M., Akhtar R.S., Latham C.B. and Roth K.A., “Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection”, J. Histochem. Cytochem., 51, 981-987, 2003.

59. Peng X., Schlamp M.C., Kadavanich, A.V. and Alivisatos A.P., “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility”, J. Am. Chem. Soc., 119, 7019-7029, 1997.

60. Murray C.B., Norris D.J. and Bawendi M.G., “Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites”, J. Am. Chem. Soc., 115, 8706-8715, 1993.

61. Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F. and Bawendi M.G., “(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites”, J. Phys. Chem. B, 101, 9463-9475, 1997.

62. Hines M.A. and Guyot-Sionnest P., “Synthesis of strongly luminescing ZnS-capped CdSe nanocrystals”, J. Phys. Chem. B, 100, 468-471, 1996.

63. Chan W.C.W. and Nie S., “Quantum dot bioconjugates for ultrasensitive nonisotopic detection”, Science, 281, 2016-2018, 1998.

64. Mitchell G.P., Mirkin C.A. and Letsinger R.L., “Programmed assembly of DNA functionalized quantum dots”, J. Am. Chem. Soc., 121, 8122-8123, 1999.

65. Nirmal M., Dabbousi B.O., Bawendi M.G., Macklin J.J., Trautman J.K., Harris T.D. and Brus L.E., “Fluorescence intermittency in single cadmium selenide nanocrystals”, Nature, 383, 802-804, 1996.

66. Efros, A.L. and Rosen, M., “Random telegraph signal in the photoluminescence intensity of a single quantum dot”, Phys. Rev. Lett., 78, 1110-1113, 1997.

67. Chen Y. and Rosenzweig Z., “Luminescent CdS quantum dots as selective ion probes”, Anal. Chem., 74, 5132-5138, 2002.

68. Gao X., Cui Y., Levenson R.M., Chung L.W.K. and Nie, S., “In vivo cancer targeting and imaging with semiconductor quantum dots”, Nature Biotechnology, 22, 969-76, 2004.

69. So M.K., Xu C., Loening A.M., Gambhir S.S. and Rao J., “Self-illuminating quantum dot conjugates for in vivo imaging”, Nature Biotechnology, 24, 339-43, 2006.

70. Duncan R., “The dawning era of polymer therapeutics”, Nat. Rev. Drug Discov., 2, 347-360, 2003.

71. Jain R.K., “Transport of molecules, particles, and cells in solid tumors”, Ann. Rev. Biomed. Eng., 1, 241-263, 1999.

72. Jain R.K., “Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function”, J. Control. Release, 74, 7-25, 2001.

73. Cheong W.F., Prahl S.A. and Welch A.J., “A review of the optical properties of biological tissues”, IEEE J. Quantum Electron., 26, 2166-2185, 1990.

74. Ntziachristos V., Bremer C. and Weissleder R., “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging”, Eur. Radiol., 13, 195-208, 2003.

75. Zhang C.Y., Ma H., Nie S.M., Ding Y., Jin L. and Chen D.Y., “Quantum dot-labeled trichosanthin”, Analyst, 125, 1029-1031, 2000.

76. Winter J.O., Liu T.Y., Korgel B.A. and Schmidt C.E., “Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells”, Adv. Mater., 13, 1673-1677, 2001.

77. Kloepfer J.A., Mielke R.E., Wong M.S., Nealson K.H., Stucky G. and Nadeau J.L., “Quantum dots as strain- and metabolism-specific microbiological labels”, Appl. Environ. Microbiol., 69, 4205-4213, 2003.

78. Goldman E.R., Anderson, G.P., Tran P.T., Matttoussi H., Charles P.T. and Mauro J.M., “Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays”, Anal. Chem., 74, 841-47, 2002.

79. Kapanidis A.N., Ebright Y.W. and Ebright R.H., “Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates”, J. Am. Chem. Soc., 123, 12123-25, 2001.

80. Tokumasu F. and Dvorak J., “Development and application of quantum dots for immunocytochemistry of human erythrocytes”, J. Microsc., 211, 256-261, 2003.

81. Gerion D., Chen F., Kannan B., Fu A., Parak W.J., Chen D.J., Majumdar A. and Alivisatos A.P., “Ultra-fast room-temperature single nucleotide polymorphism detection and multi-allele DNA detection using fluorescent nanocrystal probes and microarray”, Anal. Chem., 75, 4766-4772, 2003.

82. Dahan M., Laurence T., Pinaud F., Chemla D. S., Alivisatos A. P., Sauer M. and Weiss S., “Time-gated biological imaging by use of colloidal quantum dots”, Opt. Lett., 26, 825-827, 2001.

83. Goldmann E.R., Clapp A.R., Anderson G.P., Uyeda H.T., Mauro J.M., Medintz I.L. and Mattoussi H., “Multiplexed toxin analysis using four colors of quantum dot fluororeagents”, Anal. Chem., 76, 684-88, 2004.

84. Makrides S.C., Gasbarro C. and Bello J.M., “Bioconjugation of quantum dot luminescent probes for western blot analysis”, Biotechniques, 39, 501-506, 2005.

85. Ward W.W. and Cormier M.J., “Energy transfer via protein-protein interaction in Renilla bioluminescence”, Photochem. Photobiol., 27, 389-396, 1978.

86. Wilson T. and Hastings J.W., “Bioluminescence”, Annu. Rev. Cell Dev. Biol., 14, 197-230, 1998.

87. De A. and Gambhir S.S., “Non-invasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer”, FASEB J., 19, 2017-2019, 2005.

 

 

上一篇:蘇州倉慕新材料有限公司 
下一篇:麥克林雙吖丙啶試劑及相關(guān)產(chǎn)品介紹

西藏| 水富县| 建湖县| 绥棱县| 定襄县| 滕州市| 武邑县| 崇礼县| 乌鲁木齐市| 自贡市| 三台县| 长武县| 望城县| 新巴尔虎右旗| 兴城市| 枝江市| 池州市| 水富县| 五常市| 保定市| 阜城县| 南充市| 洪湖市| 宁陵县| 无锡市| 柳州市| 化州市| 康定县| 双流县| 宽甸| 山东省| 阿尔山市| 黑水县| 五峰| 壤塘县| 潢川县| 德格县| 隆子县| 武定县| 阜康市| 泰和县|